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ABSTRACT

This report is a study on some elementary information handling properties
of neuromime nets, giving most emphasis to the functioning of a single
neuromime component, and containing some discussion of the operation of
simple nets. Single component computation is treated from the point of
view of changes brought about in the internal structure by operations
performed during data flow. A geometrical model is presented which
illustrates the pattern measurement behavior of the component, and some
of the simpler differential equations of adaptation are solved to pruvida
some insight into the effect and interaction of the component control
parameters. Simple net behavior is concerned mainly with feedback inter-

action among couwponents, and gives some useful notation for describing net

operation.
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Section I

INTRODUCTION

This report is a description of the computations performed by a type
of neural net, and can function as a programming manual for this net.

The contract under which this report was prepared is a part of an
effort to develop more effective information handling systems, in the
sense of extracting usable knowledge from received signals.

More generally, the overall effort is concerned with the development
of information processing systems with capabilities approaching those of
the human brain. The approach being taken to solve this prcblem is to
analyze the behavior of the brain, breaking it down into functional components,
then analyzing each component until a basic component is reached which can be
constructed with present technology. These components are then constructed
(or simulated) and put together in various systems, and the behavior of these
systems compared with actual cognitive operations.

Emphasis has been placed on the functioning of individual components and
simple nets. Section II gives a basic description of the operations performed
by components, the kinds of net structures the component is designed to form,
and a general discussion of the computational parameters. Section III describes
informally the computations performed by a single neuromime, with particular
attention to adaptation. Section IV is a more rigorous discussion of the
computational processes of a component, section V of the adaptation process,
and section VI discusses simple nets. Section VII considers a number of
extensions, conjectures and unsolved problems that have arisen in connection

with this research.



Section II

GENERAL PROPERTIES OF NEUROMIME
AND NETS

The problem under consideration is that of building a flexible pattern-
recognizing device to be used in decoding signals produced by some sort of
sensory encoders. Instead of producing a device directly, it is desired to
investigate the design of a more general computation system that would be
self-organizing.

This report is an analysis of some of the mathematical properties of a
computation system developed by the contract menitor.* The system is modeled
after an organizational mechanism shown in Figure 2.1. There are a series of
computation areas with a number of transmission lines comnecting them with
each other, and with the outside, both input and output. The computer would
have the ability to alter the computation parameters of an area in such a
way as to alter its responses with time and it would also have the property
that some areas could be activated and others de-activated for periods of
time.

A computational element, called a neuromime, has been designed for
the system and is illustrated in Figure 2.2. There are four sets of 10
input lines each, called f* ; 5 §+, and g_. Each set can be regarded as
a 10 dimensional vector. Since all transmission to and from the element is
in the form of positive numbers, each element in each of the vectors is positive,

Associated with each input vector is a weighting vector, respectively
EI*’ Ei-, Eé+, and ES" The output R is computed as follows: [B is a bias--

used as the exciting or inhibiting mechanism, M. and M. are weighting

I S
factors ]
e > -»> -»>

= + e - = e

I =B+ MI(I GI+ I GI_)
> > +> >

= + . = =
S MS(S Gg+ - S GS_) (2.1)
R = max(I + S, 0)

*See Neuron Component Development, Semi-Annual Report, Contract AF33(616)-6805,
General Electric Co., 15 June 1960; Gracer and Orr, Neuromime Network Simula-
tion, Final Report, Contract AF33(657) 11194, Service Bureau Corp., li4 August
1964; Neural Network Simulator, Final Engineering Report, Contract AF33(657)-
8489, Teledyne Systems Co., January 1965,
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After the computation of R,
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with the same number of elements as A,
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the G's are altered to make them respond

z
are weighting factors, A 1is a vector
each equal to the average of the

> -+
f") + GI"'
> >

e+ R« (I"=~-1I7)+ Gy~

" N (2.2)
Ggt = Fg * R - (st - st) + Ggy

<+ > > >

Gg- = -Fg = R * (s~ -5~ )+ Gg-

subject to some restraint on the final value of each G vector.

One

restraint considered is that the sum of the elements in each G vector



should remain the same, another is that the sum of squares of the elements
in each G vector shonld be constant.

A computational area in the computer is composed of a number of these
elements. Inputs to the area from other areas or from the outside are
connected to I 1inputs of the neuromimes. The S inputs are connected
to the outputs of neuromimes in the same area to give feedback to the system.
The inputs B, F and M can be from anywhere in the system.

The overall combination of computational areas is called a net, and a
single area is called a level. The organization of a level is illustrated
in Figure 2,3, The I inputs to each component are taken from external
sources, while the outputs of some of the neuromimes are connected to the
S inputs of others. All S inputs in the level are taken from outputs
of other components in the same level, The external sources will be termed
the Input Space. ﬂ

Parameters affecting the computations of the level are MI’ MS’ FI’
FS’ and B. FI and FS are adaptation weights which have no immediate
effect on a particular computation, while B 1is a bias acting on each
component of the level., If MS = 0, then each of the components performs
a measurement on the Input Space independent of all other measurements in
the level, except, of course, of possible overlap and statistical correla-
tion between the inputs to the different components. When MS is nonzero
a degree of interaction is introduced.

These parameters are designed to yield the following behavior from a
level:

1. The output of a particular component can be either increased or
decreased by the output of a neighboring component.

2. The degree of interaction can be controlled on a global basis;
that is, the general degree of dependence of the outputs of components on
the outputs of other components can be controlled.

3. The degree of dependence of the output of a particular component

on the outputs of its neighbors can be controlled on a local basis.

4, The overall activity of the net can be controlled.
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i

Inputs to leveli+l

Figure 2.3, Example of Neuromime Net



Figure 2.4 shows how the first consideration is effected. The
component C has as an S+ input the output from component N,, and
as an S~  input the output from component N,. A large output from N,
will raise the output of C, and a large output from N, will lower the
output of C. The degree of interaction is given by the ratio of MI to
MS. 1f MI/MS >> 1, there will be little interaction, if MI/MS << 1,
there will be a great deal of interaction.

MI and MS are parameters common to each component on a level. An
adjustment in their ratio therefore increases or decreases the interaction
generally,

It is necessary to make use of a special kind of interconnection to
obtain the third consideration. In Figure 2.5, we see that the output of
component N 1is connected to both the s¥ and s~ inputs of component C.
The degree of interaction is thus dependent on the G_ set of C. The

S
effect of N on C 1is

+ - + =
Reg; - RNgj = Ry(g; - gj) (2.3)
T REE O P
where g; 1s an element of GS, gj is an element of GS’ and RN
+ -
is connected to the ith S  input and to the jth S  input.

Initially, gz = gj, so that there is no interaction. If PS
is nonzero, however, the Gs sets will be altered in the szame manner
as the GI sets are altered with PI. A positive FS will increase
g; and decrease gg, making the interaction of N and C positive,
and a negative PS will have the reverse effect, thus alterinyg the local
degree of interaction.

The bias, B, which can be either positive or negative, is a device
to adjust the activity threshold of each component in the level. If this
bias is low, the level will tend to be "aware" of only those inputs for
which it is set up to give a maximal response. Conversely, if the bias
is high, the activity will be increased, and the level will tend to be
"aware" of inputs which it formerly ignored (because R < 0)

For further discussion of the action of a level, it is useful to

have in mind the mathematical formulations and geometric models developed



in the following chapters. Most of the work has been for the special case
of constant inputs to a level, although in the last chapter some preliminary

formulations are given for time varying inputs,



Fijure 2.4. Sample Net showing Positive
and Negative Interaction

Fiure 2.5 Example of Interaction Alterable to either
Positive or Negative by Gs—set Adaptation



Section III

COMPUTATIONS PERFORMED BY A SINGLE WEUROMIML

A neuromime can be considered as an adaptive measuring device on an
input space., Its input consists of 2n 1lines, n of which are attached
to the il inputs, and n to the I  inputs. These lines can be con-
sidered as a 2n-dimensional time varying vector function ;(t), whose
first n components are inputs to I and the last n to I". The com-
ponents of X will be denoted as Xpseoes Xos X ineees X for the
present, we will consider z(t) to be constant over a period ts changing
as step functions, A typical component might have values as in Figure 3.1,

The values of the components are restricted to be between 0 and 1.

1 ]
xi(t)
0 1 [ i [] o }t
tl 2tl 3tl Htl Stl

Typical Sequence of Values for a Single
Input to a Heuromime

Figure 3.1

Within the neuromime are stored a set of weights correspondine to
the inputs. These weights may be denoted by the vector elements
BrsversBys Byysee a8y Since in Equation (2.1) the last n g-elements

are subtracted, it makes sense to consider in the following the vector g

10
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n+l

For a beginning in the discussion we will consider the simplest case
of the neuromime, with MS =0, B=0 and MI = 1. The computations given
by (2.1) reduce to

-> -
R=x-°¢g

(3.2)
R'

max(R,0)

The restriction on the g elements considered in this report is that

n
z g; = Y g; =1 (3.3)
There is a further restriction on each g-element

JE %- i=1,...,20 (3.4)

for a given integer p. This latter restriction means that a g-element
can saturate so that it cannot be increased. Its effect may be seen by
considering the adaptation process in Figure 3.2

Figure 3.2 gives an example of the adaptation for a particular input
on the excitatory inputs only. Part a) shows the input elements. Part b)

shows the deviation vector of Equation (2.2)

-+ > —.:
pt =1t - 17 (3.5)

which is used to guide the adaptation. Part c) shows the g-set before

adaptation. Note that g and g, are saturated. Part d) shows the

11



-

-

|

Pt

X X X X X X X X X X
1 2 T3 Two s %6 Y7 T T9 Tho

I ]
= —
] L

4 d, dy 4, dg &g 4 g gy 4

B, & &3 &, & B, B; B & &

v v
¥ L ¥ 1
€, 8 By B, Bs By B; Fy B9 By
’
8, 8 8; 8 & B8 8 85 & g

Figure 3.2.
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g-set after adaptation, with an indication of the g-elements which were
unable to adapt by the full amount because of saturatien, There is a
mechanism in the simulator which adjusts for this occurence. Part e)
shows the g-set as it would be if this input were repeated sufficiently.
Using the deviation vector rather than the input vector in this
adaptation 1s justified by the normalization criterion that the sum of the

g-elements remain constant. The sum of the d-elements is zero, so that

(3.6)

ne~13
V2]
(=
+
oz}
—
<
"3
o
"
i t~13
[1e]

n
L (s; + FyRay) =
i=1 i

1 . i
Note that in Equation (2.2), the inhibitory deviation vector is subtracted
from the inhibitory g vector.

The terminal g-set is of interest because it in a certain sense picks
out those inputs of most significance and ignores the rest. On the excitatory
side it picks out the p largest inputs (those p which have the least
negative deviation), and on the inhibitory side it picks out the p smallest
inputs (those which have the least positive deviation). The component will
give an output only if most of the significant excitatory inputs are present
and most of the inhibitory inputs are absent. TFigure 3.3 shows three devia-
tion vectors which result in the same terminal g-set.

In practice, the g-sets will rarely achieve their terminal state, but
will fluctuate about some intermediate configuration., In the operation of
the net, the first input will generally find a neuromime for which it gives
a high response. This neuromime (neuromime A) will adapt its g-set more
toward this input than will any other, even thoush many neuromimes will
produce an output and will adapt to a degree. For subsequent inputs which
differ from the first, neuromime A will generally give a small output and
will adapt toward this new input relatively little, while others will .adapt
more. If the first input recurs reasonably soon, neuromime A will have an
even larger output relative to the others than before, and will continue
this differential adaptation. The first input, however, will probably not

recur often enough to drive neuromime A to a terminal state.

13
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Section IV

GEOMETRICAL MODEL OF COMPUTATIONS
PERFORMED BY A SINGLL H{ZUROMIME

Because of the vector nature of the operations in the neuromime, it
makes sense to look upon them in a geometrical model. The acaptation
restrictions given by equations (3.3) and (3.4) indicate that this model
is related to a higher dimensional octahedron. A discussion of the
formulation of this concept and an introduction to the notation and lan=-
guage of this model is given in Appendix I. The following discussion
assumes that the reader is familiar with this material.

Since the terminal state of a neuromime is relatively simple compu-
tationally, we will develop the model from it. We will assume that tii:
normalization is octahedral, as in equations (3.3), (3.4) and will con-
sider only the I+, I_  inputs by setting Ms = B = 0. We will specak
of the G-set as divided into two vectors G+ and G~ with elements {g;}
and {gg}, respectively., Each of the vectors I+, T G+, G~ will hav:

n elements.

The condition that the G-set is terminal means that cach g;. g; =quals
either 0 or ~L meaning that there are only p nonzero elements in each
of G+ G , denoted by {g ,...,gi } and {g ,...,g_ } respectively. Tne

]
computation of the neuromlme from p(2 1) rcduces to P

con] Fitn - 1

g. X,
221 z i 213231

DS

_.&
= (4.1)

—

We can further assume that the sets {il} and {jl} have no

numbers in common, co that we can consider the sum above to be

15



I:-B%I- E X, = 22P xiJ . (4.2)

221 's geptl Mg
Since the output R 1is computed by
R = max(I, 0),
we can say that

2
R>0 if and only if E X, > {) X . (4.3)
%=1 % f=ptl 2

The Input Space is a 2n-dimensional Euclidean space, restricted to the
principal section, and the points for which R > 0 are divided from those

where R = 0 by the hyperplane

X. + °°° + X, = X, + e + X, (4.4)
i i

1 P tptl *2p

which is a division of the principal section into two regions. If we

restrict the inputs so that

2
}? X; S 1 (4.5)
=1 L

we find that we have restricted the inputs to lie in the interior and
surface of 2n-dimensional octahedron. Furthermore, we can restrict our
attention to that 2p-dimensional octahedron, Q, determined by the vertices
vil,...,vi2 s which is also divided by the (2p-1)-dimensional hyperplane,
H, = af P

Xe +oecc X, =g + ces + X, (4.6)

or

We will denote by A the region where R > 0, and by A the region

where R = 0,

16



In the region A, R considered as a function

R: It x 17 x @t x g™ + (0, 1]

defines a set of equivalence classes, one for each possible value of R.

Geometrically, this equivalence class is a (2p-1)-dimensional hyperplane Hy:

Rg o+ oeertox. - X% = verwxg, ®yY for 0<y < 1. (4.7)
P ptl 2p

Hy is parallel to HO .

An example of this for the u4-dimensional case is given in Figure 4.1.
The figure shows the intersection of the 3-dimensional hyperplanes Hp and
Hi.with the face of the octahedron. The limiting case is the 2-dimensional
hyperplane x; + X = 1, X3 = X, = 0, which is a line in the x)x; coordi-
nate plane., This is shown as H, in the figure,

For the 2p-dimensional case, H is given by the equations

X. 4 oee xi = l’ xi = eeo T X, = o (’4-8)

and is thus a (p-1)-dimensional hyperplane, a degenerate member of the
(2p-1)-dimensional family Hy. As such, it is also parallel to Hj .

We will denote the vector (xi seveaX; ) as %*, We can thus interpret
R as a "distance" measure of the hyperplagg containing the input point X%
from a reference hyperplane H1 . R willbe 1 when x*e H, and 0 when
x* ¢ A, A response R = 1 does not identify the imput as a particular point,
but restricts it to a (p-1)-dimensional hyperplane. In the example given in
Figure 4.1, points (1, 0, 0, 0) and (0, 1, 0, 0) are both contained in H; .
An interval 0 <a <Rs<bg1 ((interval (a, b)) defines a neighborhood in
the space Q as the 2p-dimensional volume bounded by the (2p-1)-dimensional
hyperplanes Ha and Hb. This is a kind of "slice" of the octahedron Q, so
that two points can be in the same neighborhood even though their Euclidean
distance from each other might be very large, and can be in different intervals

even though it might be small.

17
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The more complicated non-terminal case can now be treated. Equation

(2.1) now reduces only to:

Setting R = R'/MI, we have

R = &% roeet En*n T Bna1™ne1 T 77T T €2n*2n - E ’ ; (&)
In addition, E is altered after the computation as follows:
g=T+R-d+g (%.10)
where
/ & d,
> &n > 4,
g = =2 aas d
n+l n+l
“&2n d2n
di = XI - xf s 1=1,..4,n
d. = %, = X~ i=1,440,n

and F 1is a constant parameter. For the present, we can take F = 1,

An example of this computation iterated until the G-sets become terminal

is given in Table 4,1 forn = 2 and p = 1.



If both the g; and X; are restricted as before to the interval

{0, 1] equation (4.9) for R = 0 determines
plane, H , dividing the principal section of

This hyperplane always contains the line X

gl + eoce +gn=gn+l+o-o +g2n_

by the octahedral normalization; and for

X, = o200 = X :a’

a (2n-1)-dimensional hyper-

a 2n-dimensional octahedron,

X = ece = X since
2 2n

I
(=]

gjat sec ¥ guac- Eny1® T 777 T Bpp? T a(gl st Eh T Epy1 T 7T T g2n)

= a(l-1)=0, (4.11)
for any a. The intersection of H with the 2nth order face therefore
3 3 = ie:em = -_l— 1 - = eee =
contains the point X, = = X0 T 5n e The line X, x, = = X0

will be denoted by L.

The orientation of H can be determined by considering the inter-

sections of H with the 2nd order faces (edges) of the octahedron. An

edge (vi, vj) is described by the set of 2n - 1 equations

X, =0 fort =1, 2,...,2n

L

2 #1iorj

The intersection of H with (Vi’ vj) is the point resulting from the

addition of one of the equations

1}
(o)

g;%4 + gjgj

8;%; - gjxj =0

(4.13)

(4.14)

to the set describing (vi, vj), making 2n equations in all. Equation (4.13)

appears if i and j are both either greater than n or less than n + 1;
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Table 4.1

Sample Iteration of a Four-dimensional G-set

4 -f_
X 1 x2 X 3 X Yy
5 .6 K3 .2
> >_
4 b 4, d, > q,
BT .1 .2 .2
il G R
Iteration B gz gg . _g.‘*_ =
1 .5 .5 .5 .5 1%
2 .49 .51 .u8 .52 .11
3 .u8 .52 U6 .54 .12
4 47 .53 .uy .56 .13
5 .45 .55 .l .59 .15
6 .43 .57 .38 .62 .16
7 .42 .58 .35 .65 .18%
8 .40 .60 .31 .69 .20
9 .38 62 .27 .73 .22
10 .36 64,23 .77 .24
1 .34 .66 .18 .82 .26
12 .31 .69 .13 .87 .29
13 .28 .72 .07 .93 . 32%
14 .25 .75 .01 .99 .35
15 .21 .79 0.0 1.0 .36
final 0.0 1.0 0.0 1.0 L40%*

*Indicates points taken for example in Figure 4.3
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Equation (4.14) appears otherwise. The former corresponds to the cases

where x, and x; are both in I' or I, and the latter to the cases
R .- .. -

where X, 1is in I and xj in I 9or x; 1s in I and x. is in

+

15

The solution to (4.12) + (4.13) is, for g; > 0,8, >0

g 5
X, = '—.-—-J— X. ® ——l'— ('4.15)

This solution lies outside the principal section of the octahedron, since
if Xs is positive, &g = gj must be negative, and if g; - gj is negative,
xj will be negative. Similarly, if gy - gj is positive, Xs will be
negative.

H and (Vi’ vj) can intersect only when gi = 0, or gj = 0, or both.
When g; = 0, the solution is X: = 1, xj = 0. When gj = 0, the solution
is xj =1, X, = 0. These points correspond respectively to Vs and v..
When g = gj = 0, every point in (vi, vj) is a solution. Geometrically,
the first case occurs when H passes through the vertex Vi’ the second
occurs when H passes through vj, and the third when all of (vi, Vi) lies
in H.

The solution to (4.12) + (4.14) is

g. .
K. £ sicatic F. = (4.16)

which clearly lies in the principal section. The point (xi, xn) will
lie closer to the vertex corresponding to the lesser of i gj, and will
be at the midpoint of the edge (vi, vj) when g; = gj. X

These solutions can be characterized by saying that H separates I
vertices from 1~ vertices. In other words, if the input X 1lies on the
side of the I~, there is no response, and if X lies on the side of the
I+, there is a response. We will speak of H dividing the principal

section intn a response region and a non-response region.

22



An example is given in Figure 4,2 for the u-dimensional case, as seen

in the uth order face. H intersects the face in a plane H',

* <oz . N e~ =
I = (xl, xz), I = (xa, xu), g = 2D, g, = .5, g, o7, g, .3,

Note that H intersects the edges (vl, va), (vl, v“), (vz, va) and
(v,, Vu); the edge (v, vz) lies on the response side of H and the edge
(va,v“) lies on the nonresponse side of H.

The alteration of the 53-sets results in a rotation of H about the
line L. In the face this becomes a rotation about the center point. This
alteration can proceed until the terminal state., Recall that the terminal
state for the g-sets has each g; equal to 0 or %-. Taking every combi-
nation of g; and gj, we note the only possible combina;ion of values are
that both g; and gj are zero, that bo;h are equal to E— , and that one
is equal to zero and the other equal to 5 - In the first instance, (vi, vj)
lies entirely in H , in the second, H intersects (vi, vj) at its midpoint,
and in the last, H intersects (vi, vj) at the vertex corresponding to the
g-element equal to zero,

An example of the rotation process for n = 2 is given in Figure 4,3,
The sequence of numbers is that given in Table 4.l. Note that the angle
between H and (vz, vq) tends toward 90° and the angle between H and
(vys v3) tends toward 0° .

The angle between H and an edge (vi, vj) is of interest since it
tells how much the preponderance of X, over xj affects the output, which
is related to the distance of x from H . As the projection of X on the
xixj coordinate plane moves along tzg edge *(vi, vj), the output will change
as the cosine of the angle between x and g , the normal to H, as in
equation (2,2). If the angle between (vi, vj) with H becomes small, any
movement of x primarily in the xixj—coordinate plane zill have little effect
on the output, since this movement is perpendicular to g . In other words it
does not matter what value a particular X5 takes if the corresponding value
of g; is near zero.

Since the parameter p is the same for both ¢t ana @ s there will
always be the same number of nonzero elements in both sets. The terminal case
will, therefore, always have an even number of nonzero g; and an even number
of zero g The set of (vi, vj) such that both g; and gj are zero
determines a simplex of 2(n - p) dimensions. This simplex has as vertices

all those coordinates which contribute nothing to the input. These vertices
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response region.

non-response
region

V2 v3
Figure 4,2
Four-dimensional Case for g; = .5, gp = .5, g3 = .7, g, = .3

indicates midpoint of edge.
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2 iteration 13

figur: 4,3 Various Stages in the Rotation of H'

Data taken from Table 1.
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for Four pimensions
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